How to compute a derivative

Computing derivatives of complicated functions

- How do you compute the derivatives in an LSTM or GRU cell?
- How do you compute derivatives of complicated functions *in general*
- In these slides we will give you some hints
- In the slides we will assume vector functions and vector activations
- But we will also give you scalar versions of the equations to provide intuition
- The two sets will be almost identical, except that when we deal with vector functions
 - The notation becomes uglier and less intuitive
 - We must ensure that the dimensions come out right
- Please compare vector versions of equations to their scalar counterparts for better intuition, if needed

First: Some notation and conventions

- We will refer to the derivative of scalar L with respect to x as $\nabla_x L$
 - Regardless of whether the derivative is a scalar, vector, matrix or tensor
- The derivative of a scalar *L* w.r.t an $N \times 1$ column vector *x* is a $1 \times N$ row vector $\nabla_x L$
- The derivative of a scalar L w.r.t an $N \times M$ matrix X is an $M \times N$ matrix $\nabla_X L$
 - Remember our gradient update rule $: W = W \eta \nabla_W L^T$
- The derivative of an $N \times 1$ vector Y w.r.t an $M \times 1$ vector X is an $N \times M$ matrix $J_X(Y)$
 - The Jacobian

Rules: 1 (scalar)

z = Wx

- All terms are scalars
- $\frac{\partial L}{\partial z}$ is known

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} W$$
$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial z}$$

Rules: 1 (vector)

z = Wx

- z is an $N \times 1$ vector
- x is an $M \times 1$ vector
- W is an $N \times M$ matrix
- *L* is a function of *z*
- $\nabla_z L$ is known (and is a $1 \times N$ vector)

 $\nabla_{x}L = (\nabla_{z}L)W$ $\nabla_{W}L = x(\nabla_{z}L)$

Please verify that the dimensions match!

Rules: 2 (vector, schur multiply)

$z = x \circ y$

- x, y and z are all $N \times 1$ vectors
- "•" represents component-wise multiplication
- $\nabla_z L$ is known (and is a $1 \times N$ vector)

 $\nabla_{x}L = (\nabla_{z}L) \circ y^{T}$ $\nabla_{y}L = (\nabla_{z}L) \circ x^{T}$

Please verify that the dimensions match!

Rules: 3 (scalar)

$$z = x + y$$

- All terms are scalars
- $\frac{\partial L}{\partial z}$ is known

∂L	∂L
∂x	∂Z
∂L	∂L
$\overline{\partial y}$	∂z

Rules: 3 (vector)

$$z = x + y$$

- x, y and z are all $N \times 1$ vectors
- $\nabla_z L$ is known (and is a $1 \times N$ vector)

 $\nabla_{x}L = \nabla_{z}L$ $\nabla_{y}L = \nabla_{z}L$

Please verify that the dimensions match!

Rules: 4 (scalar)

$$z = g(x)$$

- *x* and *z* are scalars
- $\frac{\partial L}{\partial z}$ is known

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} g'(x)$$

Rules: 4 (vector)

$$z = g(x)$$

- x and z are $N \times 1$ vectors
- $\nabla_z L$ is known (and is a $1 \times N$ vector)
- $J_x g$ is the Jacobian of g(x) with respect to x
 - May be a diagonal matrix

$$\nabla_{\!x}L = \nabla_{\!z}L J_x g$$

Please verify that the dimensions match!

Rules: 4b (vector) component-wise multiply notation z = g(x)

- x and z are N × 1 vectors
- $\nabla_z L$ is known (and is a $1 \times N$ vector)
- g(x) is actually a vector of *component-wise* functions
 i.e. z_i = g(x_i)
- g'(x) is a column vector consisting of the derivatives of the individual components of g(x) w.r.t individual components of x

 $\nabla_{x}L = \nabla_{z}L \circ g'(x)^{T}$ Please verify that the dimensions match!

Rule 5: Addition of derivatives

Given two variables

z = g(x)y = h(x)

- And given $\frac{\partial L}{\partial y}$ and $\frac{\partial L}{\partial z}$
- we get

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z}g'(x) + \frac{\partial L}{\partial y}h'(x)$$

The rule also extends to vector derivatives

Computing derivatives of complex functions

- We now are prepared to compute very complex derivatives
- Procedure:
 - Express the computation as a series of computations of intermediate values
 - Each computation must comprise either a unary or binary relation
 - Unary relation: RHS has one argument, e.g. y = g(x)
 - Binary relation: RHS has two arguments
 e.g. z = x + y or z = xy
 - Work your way backward through the derivatives of the simple relations

Example: LSTM

• Full set of LSTM equations (in the order in which they must be computed)

1
$$f_t = \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f)$$

2
$$i_t = \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$\mathbf{4} \qquad C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

5
$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C}_t, h_{t-1}, x_t] + b_o \right)$$

$$\mathbf{6} \qquad h_t = o_t * \tanh\left(C_t\right)$$

• Its actually much cleaner to separate the individual components, so lets do that first

1.
$$f_t = \sigma(W_{fC}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f)$$

2. $i_t = \sigma(W_{iC}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{Ch}h_{t-1} + W_{Cx}x_t + b_C)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oC}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

- This is the full set of equations *in the order in which they must be computed*
- Lets rewrite these in terms of unary and binary operations

1.
$$f_{t} = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_{t} + b_{f})$$
2.
$$i_{t} = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_{t} + b_{i})$$
3.
$$\tilde{C}_{t} = \sigma(W_{ch}h_{t-1} + W_{cx}x_{t} + b_{c})$$
4.
$$C_{t} = f_{t} \circ C_{t-1} + i_{t} \circ \tilde{C}_{t}$$
5.
$$o_{t} = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_{t} + b_{o})$$
6.
$$h_{t} = o_{t} \circ \tanh(C_{t})$$

-1

• Lets rewrite these in terms of unary and binary operations

1. $z_1 = W_{fC}C_{t-1}$ 2. $z_2 = W_{fh}h_{t-1}$ 3. $z_3 = z_1 + z_2$ 4. $z_4 = W_{fx}x_t$ 5. $z_5 = z_3 + z_4$ 6. $z_6 = z_5 + b_f$ 7. $f_t = \sigma(z_6)$

1.
$$f_{t} = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_{t} + b_{f})$$
2.
$$i_{t} = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_{t} + b_{i})$$
3.
$$\tilde{C}_{t} = \sigma(W_{ch}h_{t-1} + W_{cx}x_{t} + b_{c})$$
4.
$$C_{t} = f_{t} \circ C_{t-1} + i_{t} \circ \tilde{C}_{t}$$
5.
$$o_{t} = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_{t} + b_{o})$$
6.
$$h_{t} = o_{t} \circ \tanh(C_{t})$$

• Lets rewrite these in terms of unary and binary operations

1. $z_1 = W_{fc}C_{t-1}$ 2. $z_2 = W_{fh}h_{t-1}$ 3. $z_3 = z_1 + z_2$ 4. $z_4 = W_{fx}x_t$ 5. $z_5 = z_3 + z_4$ 6. $z_6 = z_5 + b_f$ 7. $f_t = \sigma(z_6)$

- 8. $z_7 = W_{iC}C_{t-1}$
- 9. $z_8 = W_{ih}h_{t-1}$
- 10. $z_9 = z_7 + z_8$
- 11. $z_{10} = W_{ix} x_t$
- 12. $z_{11} = z_9 + z_{10}$
- 13. $z_{12} = z_{11} + b_i$
- 14. $i_t = \sigma(z_{12})$

1.
$$f_t = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f)$$

2. $i_t = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{ch}h_{t-1} + W_{cx}x_t + b_c)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ C_t$
5. $o_t = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

• Lets rewrite these in terms of unary and binary operations

15. $z_{13} = W_{Ch}h_{t-1}$ 16. $z_{14} = W_{Cx}x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_c$ 19. $\tilde{C}_t = \sigma(z_{16})$

1.
$$f_t = \sigma(W_{fC}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f)$$

2. $i_t = \sigma(W_{iC}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{Ch}h_{t-1} + W_{Cx}x_t + b_C)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oC}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

• Lets rewrite these in terms of unary and binary operations

15. $z_{13} = W_{Ch}h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

1.
$$f_{t} = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_{t} + b_{f})$$

2. $i_{t} = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_{t} + b_{i})$
3. $\tilde{C}_{t} = \sigma(W_{ch}h_{t-1} + W_{cx}x_{t} + b_{c})$
4. $C_{t} = f_{t} \circ C_{t-1} + i_{t} \circ \tilde{C}_{t}$
5. $o_{t} = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_{t} + b_{o})$
6. $h_{t} = o_{t} \circ \tanh(C_{t})$

• Lets rewrite these in terms of unary and binary operations

15. $Z_{13} = W_{Ch}h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $Z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

- 23. $z_{19} = W_{oC}C_{t-1}$
- 24. $z_{20} = W_{oh}h_{t-1}$
- 25. $z_{21} = z_{19} + z_{20}$
- **26.** $z_{22} = W_{ox} x_t$
- **27**. $z_{23} = z_{21} + z_{22}$
- 28. $z_{24} = z_{23} + b_o$
- 29. $o_t = \sigma(z_{24})$

1.
$$f_t = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f)$$

2. $i_t = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{ch}h_{t-1} + W_{cx}x_t + b_c)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$
 $Z_{25} = \tanh(C_t)$
 $L_{25} = \tanh(C_t)$

• Lets rewrite these in terms of unary and binary operations

15. $Z_{13} = W_{Ch} h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $Z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

- 23. $z_{19} = W_{oC}C_{t-1}$
- 24. $z_{20} = W_{oh}h_{t-1}$
- 25. $z_{21} = z_{19} + z_{20}$
- 26. $z_{22} = W_{ox} x_t$
- **27.** $z_{23} = z_{21} + z_{22}$
- **28.** $z_{24} = z_{23} + b_o$
- 29. $o_t = \sigma(z_{24})$
- 30. $z_{25} = \tanh(C_t)$
- 31. $h_t = o_t \circ z_{25}$

LSTM forward

- The full forward computation of the LSTM can be performed by computing Equations 1-31 in sequence
- Every one of these equations is unary or binary

1. $z_1 = W_{fc}C_{t-1}$ 2. $z_2 = W_{fh}h_{t-1}$ 3. $z_3 = z_1 + z_2$ 4. $z_4 = W_{fx}x_t$ 5. $z_5 = z_3 + z_4$ 6. $z_6 = z_5 + b_f$ 7. $f_t = \sigma(z_6)$

- 8. $z_7 = W_{iC}C_{t-1}$
- 9. $z_8 = W_{ih}h_{t-1}$
- 10. $z_9 = z_7 + z_8$
- 11. $z_{10} = W_{ix} x_t$
- 12. $z_{11} = z_9 + z_{10}$
- 13. $z_{12} = z_{11} + b_i$
- 14. $i_t = \sigma(z_{12})$

15. $Z_{13} = W_{Ch} h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $Z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

- 23. $z_{19} = W_{oC}C_{t-1}$
- 24. $z_{20} = W_{oh}h_{t-1}$
- 25. $z_{21} = z_{19} + z_{20}$
- 26. $z_{22} = W_{ox} x_t$
- **27.** $z_{23} = z_{21} + z_{22}$
- **28.** $z_{24} = z_{23} + b_o$
- 29. $o_t = \sigma(z_{24})$
- 30. $z_{25} = \tanh(C_t)$
- 31. $h_t = o_t \circ z_{25}$

Computing derivatives

- We will now work our way backward
- We assume derivatives $\frac{dL}{dh_t}$ and $\frac{dL}{dC_t}$ of the loss w.r.t h_t and C_t are given

• We must compute
$$\frac{dL}{dC_{t-1}}$$
, $\frac{dL}{dh_{t-1}}$ and $\frac{dL}{dx_t}$

- And also derivatives w.r.t the parameters within the cell
- Recall: the shape of the derivative for any variable will be transposed with respect to that variable

1. $\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$ 2. $\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T$

- 23. $z_{19} = W_{oC}C_{t-1}$
- 24. $z_{20} = W_{oh}h_{t-1}$
- 25. $z_{21} = z_{19} + z_{20}$
- 26. $z_{22} = W_{ox} x_t$
- 27. $z_{23} = z_{21} + z_{22}$
- **28.** $z_{24} = z_{23} + b_o$
- 29. $o_t = \sigma(z_{24})$
- 30. $z_{25} = \tanh(C_t)$
- 31. $h_t = o_t \circ z_{25}$

1.
$$\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$$

2. $\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T$
3. $\nabla_{C_t} L = \nabla_{z_{25}} L \circ (1 - \tanh^2(C_t))^T$

- 23. $z_{19} = W_{oC}C_{t-1}$
- 24. $z_{20} = W_{oh}h_{t-1}$
- 25. $z_{21} = z_{19} + z_{20}$
- 26. $z_{22} = W_{ox} x_t$
- 27. $z_{23} = z_{21} + z_{22}$
- **28.** $z_{24} = z_{23} + b_o$
- 29. $o_t = \sigma(z_{24})$ 30. $z_{25} = \tanh(C_t)$

31.
$$h_t = o_t \circ z_{25}$$

1.
$$\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$$

2. $\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T$
3. $\nabla_{C_t} L = \nabla_{z_{25}} L \circ (1 - \tanh^2(C_t))^T$
4. $\nabla_{c_t} L = \nabla_{c_t} L \circ \sigma(z_{2t})^T$

4.
$$\nabla_{z_{24}} L = \nabla_{o_t} L \circ \sigma(z_{24})^T \circ (1 - \sigma(z_{24}))^T$$

23.
$$z_{19} = W_{oc}C_{t-1}$$

24. $z_{20} = W_{oh}h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox}x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_0$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$

1.
$$\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$$

2. $\nabla_{Z_{25}} L = \nabla_{h_t} L \circ o_t^T$
3. $\nabla_{C_t} L = \nabla_{Z_{25}} L \circ (1 - \tanh^2(C_t))^T$
4. $\nabla_{Z_{24}} L = \nabla_{o_t} L \circ \sigma(Z_{24})^T \circ (1 - \sigma(Z_{24}))^T$
5. $\nabla_{Z_{23}} L = \nabla_{Z_{24}} L$

$$6. \quad \nabla_{b_o} L = \nabla_{Z_{24}} L$$

23.
$$z_{19} = W_{oc}C_{t-1}$$

24. $z_{20} = W_{oh}h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox}x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_o$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$

Equations highlighted in yellow show derivatives w.r.t. parameters

7.
$$\nabla_{Z_{22}}L = \nabla_{Z_{23}}L$$

8. $\nabla_{Z_{21}}L = \nabla_{Z_{23}}L$

23.
$$z_{19} = W_{oC}C_{t-1}$$

24. $z_{20} = W_{oh}h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox}x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_0$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$

7.
$$\nabla_{Z_{22}}L = \nabla_{Z_{23}}L$$

8. $\nabla_{Z_{21}}L = \nabla_{Z_{23}}L$
9. $\nabla_{W_{ox}}L = x_t\nabla_{Z_{22}}L$
10. $\nabla_{x_t}L = \nabla_{Z_{22}}LW_{ox}$

23. $Z_{19} = W_{oC}C_{t-1}$ 24. $Z_{20} = W_{oh} h_{t-1}$ 25. $z_{21} = z_{19} + z_{20}$ **26.** $z_{22} = W_{ox} x_t$ **27.** $Z_{23} = Z_{21} + Z_{22}$ 28. $z_{24} = z_{23} + b_0$ 29. $o_t = \sigma(z_{24})$ 30. $z_{25} = \tanh(C_t)$ 31. $h_t = o_t \circ z_{25}$

7.
$$\nabla_{Z_{22}}L = \nabla_{Z_{23}}L$$

8. $\nabla_{Z_{21}}L = \nabla_{Z_{23}}L$
9. $\nabla_{W_{0x}}L = x_t\nabla_{Z_{22}}L$
10. $\nabla_{x_t}L = \nabla_{Z_{22}}LW_{0x}$
11. $\nabla_{Z_{20}}L = \nabla_{Z_{21}}L$
12. $\nabla_{Z_{19}}L = \nabla_{Z_{21}}L$

23.
$$z_{19} = W_{oC}C_{t-1}$$

24. $z_{20} = W_{oh}h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox}x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_0$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$

7.
$$\nabla_{Z_{22}}L = \nabla_{Z_{23}}L$$

8. $\nabla_{Z_{21}}L = \nabla_{Z_{23}}L$
9. $\nabla_{W_{0x}}L = x_t\nabla_{Z_{22}}L$
10. $\nabla_{x_t}L = \nabla_{Z_{22}}LW_{0x}$
11. $\nabla_{Z_{20}}L = \nabla_{Z_{21}}L$
12. $\nabla_{Z_{19}}L = \nabla_{Z_{21}}L$
13. $\nabla_{W_{0h}}L = h_{t-1}\nabla_{Z_{20}}L$
14. $\nabla_{h_{t-1}}L = \nabla_{Z_{20}}LW_{0h}$

23. $z_{19} = W_{oC}C_{t-1}$ 24. $z_{20} = W_{oh}h_{t-1}$ 25. $z_{21} = z_{19} + z_{20}$ 26. $z_{22} = W_{0x} x_t$ 27. $z_{23} = z_{21} + z_{22}$ 28. $z_{24} = z_{23} + b_o$ 29. $o_t = \sigma(z_{24})$ 30. $z_{25} = \tanh(C_t)$ 31. $h_t = o_t \circ z_{25}$

- 7. $\nabla_{Z_{22}}L = \nabla_{Z_{23}}L$ 8. $\nabla_{Z_{21}}L = \nabla_{Z_{23}}L$ 9. $\nabla_{W_{0Y}}L = x_t \nabla_{Z_{22}}L$ 10. $\nabla_{\chi_t} L = \nabla_{Z_{22}} L W_{o\chi}$ 11. $\nabla_{Z_{20}}L = \nabla_{Z_{21}}L$ 12. $\nabla_{Z_{10}}L = \nabla_{Z_{21}}L$ 13. $\nabla_{W_{oh}}L = h_{t-1}\nabla_{Z_{20}}L$ 14. $\nabla_{h_{t-1}}L = \nabla_{Z_{20}}LW_{oh}$ 15. $\nabla_{W_{0C}}L = C_{t-1}\nabla_{Z_{19}}L$ 16. $\nabla_{C_{t-1}}L = \nabla_{Z_{10}}LW_{oC}$
- **23.** $z_{19} = W_{oC}C_{t-1}$ 24. $Z_{20} = W_{oh}h_{t-1}$ 25. $z_{21} = z_{19} + z_{20}$ 26. $z_{22} = W_{0x} x_t$ 27. $Z_{23} = Z_{21} + Z_{22}$ 28. $z_{24} = z_{23} + b_0$ 29. $o_t = \sigma(z_{24})$ 30. $z_{25} = \tanh(C_t)$ 31. $h_t = o_t \circ z_{25}$

15. $Z_{13} = W_{Ch} h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

7. $\nabla_{Z_{18}}L = \nabla_{C_t}L$ 8. $\nabla_{Z_{17}}L = \nabla_{C_t}L$

15. $Z_{13} = W_{Ch}h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $z_{17} = f_t \circ C_{t-1}$ $\bigcirc 21. \ z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = z_{17} + z_{18}$

7. $\nabla_{Z_{18}}L = \nabla_{C_t}L$ 8. $\nabla_{Z_{17}}L = \nabla_{C_t}L$ 9. $\nabla_{i_t}L = \nabla_{Z_{18}}L \circ \tilde{C}_t^T$ 10. $\nabla_{\tilde{C}_t}L = \nabla_{Z_{18}}L \circ i_t^T$

15.
$$z_{13} = W_{Ch}h_{t-1}$$

16. $z_{14} = W_{Cx}x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$
Second time we're computing a derivative for C_{t-1} , so we increment the derivative ("+=")

15. $Z_{13} = W_{Ch}h_{t-1}$ 16. $Z_{14} = W_{Cx} x_t$ 17. $Z_{15} = Z_{13} + Z_{14}$ 18. $z_{16} = z_{15} + b_C$ (19. $\tilde{C}_t = \sigma(z_{16})$ 20. $Z_{17} = f_t \circ C_{t-1}$ 21. $z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = Z_{17} + Z_{18}$

7. $\nabla_{Z_1\circ}L = \nabla_{C_t}L$ 8. $\nabla_{Z_{17}}L = \nabla_{C_t}L$ 9. $\nabla_{i_t} L = \nabla_{Z_1 \circ} L \circ \tilde{C}_t^T$ 10. $\nabla_{\tilde{C}_t} L = \nabla_{Z_{10}} L \circ i_t^T$ 11. $\nabla_{C_{t-1}}L + = \nabla_{Z_{1,T}}L \circ f_t^T$ 12. $\nabla_{f_t} L = \nabla_{Z_{17}} L \circ C_{t-1}^T$ 13. $\nabla_{z_{16}}L = \nabla_{\tilde{C}_t}L \circ \sigma(z_{16})^T \circ$ $(1 - \sigma(z_{16}))^T$

15.
$$z_{13} = W_{Ch}h_{t-1}$$

16. $z_{14} = W_{Cx}x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$

14.
$$\nabla_{b_C} L = \nabla_{z_{16}} L$$

15. $\nabla_{z_{15}} L = \nabla_{z_{16}} L$

15.
$$z_{13} = W_{Ch}h_{t-1}$$

16. $z_{14} = W_{Cx}x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$

14.
$$\nabla_{b_{C}}L = \nabla_{z_{16}}L$$

15. $\nabla_{z_{15}}L = \nabla_{z_{16}}L$
16. $\nabla_{b_{C}}L = \nabla_{z_{16}}L$
17. $\nabla_{z_{15}}L = \nabla_{z_{16}}L$

15.
$$z_{13} = W_{Ch}h_{t-1}$$

16. $z_{14} = W_{Cx}x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$

14.
$$\nabla_{b_{C}}L = \nabla_{z_{16}}L$$

15. $\nabla_{z_{15}}L = \nabla_{z_{16}}L$
16. $\nabla_{b_{C}}L = \nabla_{z_{16}}L$
17. $\nabla_{z_{15}}L = \nabla_{z_{16}}L$
18. $\nabla_{W_{Cx}}L = x_{t}\nabla_{z_{14}}L$
19. $\nabla_{x_{t}}L += \nabla_{z_{14}}LW_{Cx}$
Note the "+="

15. $z_{13} = W_{Ch}h_{t-1}$ 16. $z_{14} = W_{Cx} x_t$ 17. $Z_{15} = Z_{13} + Z_{14}$ 18. $z_{16} = z_{15} + b_C$ 19. $\tilde{C}_t = \sigma(z_{16})$ 20. $Z_{17} = f_t \circ C_{t-1}$ 21. $Z_{18} = i_t \circ \tilde{C}_t$ 22. $C_t = Z_{17} + Z_{18}$

14. $\nabla_{b_c} L = \nabla_{z_{16}} L$ 15. $\nabla_{Z_{15}}L = \nabla_{Z_{16}}L$ 16. $\nabla_{b_c} L = \nabla_{Z_{16}} L$ 17. $\nabla_{Z_{15}}L = \nabla_{Z_{16}}L$ 18. $\nabla_{W_{CY}}L = x_t \nabla_{Z_{14}}L$ 19. $\nabla_{x_{t}}L + = \nabla_{z_{14}}LW_{Cx}$ 20. $\nabla_{W_{Ch}}L = h_{t-1}\nabla_{Z_{14}}L$ 21. $\nabla_{h_{t-1}}L + = \nabla_{Z_{13}}LW_{Ch}$ Note the "+="

Continuing the computation

- Continue the backward progression until the derivatives from forward Equation 1 have been computed
- At this point all derivatives will be computed.

Overall procedure

- Express the overall computation as a sequence of unary or binary operations
 - Can be automated
- Computes derivatives incrementally, going backward over the sequence of equations!
- Since each atomic computation is simple and belongs to one of a small set of possibilities, the conversion to derivatives is trivial once the computation is serialized as above

May be easier to think of it in terms of a "derivative" routine

• Define a routine that returns derivatives for unary and binary operations

Derivative routine, vector version

- Note distinction between component-wise and matrix multiplies
- Observe also that matrix and vector dimensions are correctly handled (locally)
- "o" is component-wise multiply
- "*" is matrix multiply

```
function deriv(dz, x, y, operator)
case operator:
    'none' : return dx
    # component-wise ``schur" multiply
    'o' : return dz oy<sup>T</sup>, dz ox<sup>T</sup>
    # Matrix multiply. X must be a matrix
    '*' : return y*dz, dz*x
    '+' : return dz, dz
    '-' : return dz, -dz
    # The following will expect a single argument
    'tanh' : return dz o (1-tanh<sup>2</sup>(x))<sup>T</sup>
```

```
`sigmoid' : return dz∘sigmoid(x)<sup>T</sup>∘(1-sigmoid(x))<sup>T</sup>
```

```
# The jacobian is the full derivative matrix of the sigmoid
`softmax' : return dz*Jacobian(sigmoid,x)
```

When to use "=" vs "+="

- In the forward computation a variable may be used multiple times to compute other intermediate variables
- During backward computations, the first time the derivative is computed for the variable, the we will use "="
- In subsequent computations we use "+="
- It may be difficult to keep track of when we first compute the derivative for a variable
 - When to use "=" vs when to use "+="
- Cheap trick:
 - Initialize all derivatives to 0 during computation
 - Always use "+="
 - You will get the correct answer (why?)

[dC_{t-1},dx_t,dh_{t-1},d[W,b]] = LSTM derivative(dC_t dh_t) initialize d(variable)=0 (all variables) # Derivative of eq. 31 $h_t = o_t \circ z_{25}$ $[do_+, dz_{25}] += deriv(dh_+, o_+, z_{25}, ' \circ')$ # Derivative of eq. 30 z_{25} =tanh(C_t) $[dC_+] += deriv(dz_{25}, C_+, 'tanh')$ # Derivative of eq. 29 $o_t = \sigma(z_{24})$ [dz₂₅] += deriv(do_t, z₂₅, 'sigmoid') # Derivative of eq. 28 $z_{24} = z_{23} + b_0$ $[dz_{23}, db_{0}] += deriv(dz_{24}, z_{23}, b_{0}, '+')$ # Derivative of eq. 27 $z_{23} = z_{21} + z_{22}$ $[dz_{21}, dz_{22}] += deriv(dz_{23}, z_{21}, z_{22}, '+')$ # Derivative of eq. 26 $z_{22} = W_{0x}x_t$ $[dW_{ox}, dx_{t}] += deriv(dz_{22}, W_{ox}, x_{t}, '*')$ # Derivative of eq. 25 $z_{21} = z_{19} + z_{20}$ $[dz_{19}, dz_{20}] += deriv(dz_{21}, z_{19}, z_{20}, '+')$ # Derivative of eq. 24 $z_{20} = W_{oh}h_{t-1}$ $[dW_{oh}, dh_{t-1}] += deriv(dz_{20}, W_{oh}, h_{t-1}, '*')$ # Derivative of eq. 23 $Z_{19} = W_{oC}C_{t-1}$ $[dW_{oC}, dC_{t-1}] += deriv(dz_{19}, W_{oC}, C_{t-1}, '*')$

23.
$$z_{19} = W_{oC}C_{t-1}$$

24. $z_{20} = W_{oh}h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox}x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_o$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$

... continued from previous slide # Derivative of eq. 22 $C_t = z_{17} + z_{18}$ [dz₁₇, dz₁₈] += deriv(dC_t, z₁₈, z₁₈, '+') # Derivative of eq. 21 $z_{18}=i_t \circ \tilde{C}_t$ $[di_t, dtildeC_t] += deriv(dz_{18}, i_t, dtildeC_t, ' \circ ')$ # Derivative of eq. 20 $z_{17}=f_t \circ C_{t-1}$ 15. $z_{13} = W_{Ch} h_{t-1}$ $[df_{t}, dC_{t-1}] += deriv(dz_{17}, f_{t}, C_{t-1}, ' \circ ')$ 16. $z_{14} = W_{Cr} x_t$ # Derivative of eq. 19 $\hat{C}_t = \sigma(z_{16})$ 17. $z_{15} = z_{13} + z_{14}$ 18. $z_{16} = z_{15} + b_C$ [dz₁₆] += deriv(dtildeC₊, 'sigmoid') 19. $\tilde{C}_t = \sigma(z_{16})$ # Derivative of eq. 18 $z_{16} = z_{15} + b_C$ 20. $z_{17} = f_t \circ C_{t-1}$ $[dz_{15}, db_{c}] += deriv(dz_{16}, z_{15}, b_{c}, '+')$ 21. $Z_{18} = i_t \circ \tilde{C}_t$ # Derivative of eq. 17 $z_{15} = z_{13} + z_{14}$ 22. $C_t = z_{17} + z_{18}$ [dz₁₃, dz₁₄] += deriv(dz₁₅, z₁₃, z₁₄, '+') # Derivative of eq. 16 $z_{14} = W_{Cx} x_t$ $[dW_{Cx}, dx_{t}] += deriv(dz_{14}, W_{Cx}, x_{t}, '*')$ # Derivative of eq. 15 $z_{13} = W_{Ch}h_{t-1}$ $[dW_{Ch}, dh_{t-1}] += deriv(dz_{13}, W_{Ch}, h_{t-1}, '*')$

... continued from previous slide # Derivative of eq. 14 $i_t = \sigma(z_{12})$ [dz₁₂] += deriv(di_t, 'sigmoid') # Derivative of eq. 13 $z_{12} = z_{11} + b_f$ $[dz_{11}, db_{i}] += deriv(dz_{12}, z_{11}, b_{i}, '+')$ # Derivative of eq. 12 $z_{11} = z_9 + z_{10}$ $[dz_9, dz_{10}] += deriv(dz_{11}, z_9, z_{10}, '+')$ # Derivative of eq. 11 $z_{10} = W_{ix}x_t$ $[dW_{ix}, dx_{t}] += deriv(dz_{10}, W_{ix}, x_{t}, '+')$ # Derivative of eq. 10 $z_9 = z_7 + z_8$ $[dz_7, dz_8] += deriv(dz_9, z_7, z_8, '+')$ # Derivative of eq. 9 $z_8 = W_{ih}h_{t-1}$ $[dW_{ih}, dh_{t-1}] += deriv(dz_8, W_{ih}, h_{t-1}, '*')$ # Derivative of eq. 8 $z_7 = W_{iC}C_{t-1}$ $[dW_{iC}, dC_{t-1}] += deriv(dz_7, W_{iC}, C_{t-1}, '*')$

8.
$$z_7 = W_{iC}C_{t-1}$$

9. $z_8 = W_{ih}h_{t-1}$
10. $z_9 = z_7 + z_8$
11. $z_{10} = W_{ix}x_t$
12. $z_{11} = z_9 + z_{10}$
13. $z_{12} = z_{11} + b_i$
14. $i_t = \sigma(z_{12})$

... continued from previous slide # Derivative of eq. 7 $f_t = \sigma(z_6)$ [dz₆] += deriv(df_t, 'sigmoid') # Derivative of eq. 6 $z_6 = z_5 + b_f$ $[dz_5, db_f] += deriv(dz_6, z_5, b_f, '+')$ # Derivative of eq. 5 $z_5 = z_3 + z_4$ $[dz_3, dz_4] += deriv(dz_5, z_3, z_4, '+')$ # Derivative of eq. 4 $z_4 = W_{fx} x_t$ $[dW_{fx}, dx_{+}] += deriv(dz_{4}, W_{fx}, x_{+}, '*')$ # Derivative of eq. 3 $z_3 = z_1 + z_2$ $[dz_1, dz_2] += deriv(dz_3, z_1, z_2, '+')$ # Derivative of eq. 2 $z_2 = W_{fh}h_{t-1}$ $[dW_{fh}, dh_{t-1}] += deriv(dz_2, W_{fh}, h_{t-1}, '*')$ # Derivative of eq. 1 $z_1 = W_{fC}C_{t-1}$ $[dW_{fC}, dC_{t-1}] += deriv(dz_7, W_{fC}, C_{t-1}, '*')$

1. $z_1 = W_{fC}C_{t-1}$ 2. $z_2 = W_{fh}h_{t-1}$ 3. $z_3 = z_1 + z_2$ 4. $z_4 = W_{fx}x_t$ 5. $z_5 = z_3 + z_4$ 6. $z_6 = z_5 + b_f$ 7. $f_t = \sigma(z_6)$

return dC_{t-1} , dh_{t-1} , dx_t , d[W,b]

Caveats

- The deriv() routine given is missing several operators
 - Operations involving constants (z = 2y, z = 1-y, z = 3+y)
 - Division and inversion (e.g z = x/y, z = 1/y, $z = A^{-1}$)
 - You may have to extend it to deal with these, or rewrite your equations to eliminate such operations if possible
- In practice many of the operations will be grouped together for computational efficiency
 - And to take advantage of parallel processing capabilities
- But the basic principle applies to *any* computation that can be expressed as a serial operation of unary and binary relations
 - If you can do it on a computer, you can express it as a serial operation
- In fact the preceding logic is *exactly* what we use to compute derivatives in backprop
 - We saw this explicitly in the vector version of BP for MLPs.